
Secure, Reliable, Transacted Web
Services
Architecture and Composition

Donald Ferguson, IBM Fellow and Chairman IBM Software Group Architecture
Board, IBM Corporation
Tony Storey, IBM Fellow, IBM Corporation
Brad Lovering, Distinguished Engineer, Microsoft Corporation
John Shewchuk, Web Services Architect, Microsoft Corporation

Summary: This paper provides a succinct overview for the set of Web service
specifications that addresses the needs of security, reliability, and
transactability. For the details of the specifications it provides references to
the actual documents.The main purpose of this paper is to briefly define the
value these specifications provide to our customers. It also describes how these
specifications complement each other to compose robust environments for
distributed applications.

Date: 28 Oct 2003
Level: Intermediate
Activity: 3508 views

Introduction

Today Web services - specifically distributed services that process
XML-encoded SOAP messages, sent over HTTP, and described using Web
Services Description Language (WSDL) - are being deployed broadly.(See
"XML, SOAP, and HTTP" sidebar) Web services are used in a range of
application integration scenarios: from simple, ad hoc, behind-the-firewall,
data sharing to very large-scale Internet retailing and currency trading. And
increasingly Web services are being applied in mobile, device, and grid
scenarios.

Web services provide interoperability between software components that can
communicate between different companies and can reside on different
infrastructures. This solves one of the most critical problems that customers,
software developers, and partners face. HTTP and SOAP provide
communication and message interoperability. WSDL provides the description
of the service to support interoperability between development tools; it

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

1 of 29 11/20/2009 09:00 AM

complements communication interoperability with the ability to exchange
interface definitions.

The basic set of Web service specifications enables customers and software
vendors to solve important problems. Building on their success, many
developers and companies are ready to tackle more difficult problems with
Web service technology. The very success of Web services has led developers
to desire even more capabilities from Web services. Since meaningful tool and
communication interoperability has been successful, developers now expect
the enhanced functions to interoperate.

In addition to basic message interoperability and interface exchange,
developers increasingly require that higher-level application services
interoperate. Many commercial applications execute in an environment
("middleware" or "operating systems") that provide support for functions like
security and transactions.

IBM, Microsoft, and others in the industry are often asked to make Web
services more secure, more reliable, and better able to support transactions. In
addition we are asked to provide these capabilities while retaining the
essential simplicity and interoperability found in Web services today.

This paper provides a succinct overview for the set of Web service
specifications that address these needs. For the details of the specifications we
provide references to the actual documents. The main purpose of this paper is
to briefly define the value these specifications provide to our customers. We
also describe how these specifications complement each other to compose
robust environments for distributed applications.

We face a key engineering challenge: How do we give Web services new
security, reliability, and transaction capabilities without adding more
complexity than needed?

XML, SOAP, and HTTP

The terms XML, SOAP, and HTTP are in common use today and in many
respects their use has moved beyond their original acronyms. For
completeness these acronyms are listed here: XML - eXtensible Markup
Language, SOAP - Simple Object Access Protocol, and HTTP - HyperText
Transfer Protocol.

Composable Services

As we've done with SOAP and WSDL, IBM, Microsoft, and our partners have
followed the design principle of composability in the definition of Web service

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

2 of 29 11/20/2009 09:00 AM

specifications. The approach we have followed is based on the design principle
of composability in the definition of Web service specifications. Each
specification we developed solves an immediate need and is valuable in its own
right. For example, developers can adopt reliable messaging to simplify their
solution development or adopt BPEL4WS to define their service compositions.
And while each specification stands on its own, they are designed to be
combined and work with each other.

We use the term composability to describe independent specifications that can
be combined to provide more powerful capabilities. Operating system and
middleware providers can support composed capabilities, e.g. providers can
integrate reliable messaging support for communicating BPEL4WS processes.
This example combines two independent specifications to simplify the
development of communicating processes by eliminating the need to handle
message communication errors during process design.

Composability enables incremental consumption or progressive discovery of
new concepts, tools and services. Developers only need to learn and implement
what is necessary, and no more. The complexity of the solution increases only
because the problem's requirements increase, and is not due to technology
"bloat."

Composability has and continues to be one of the key design goals for Web
services. Over the last several years we have defined the most basic Web
service specifications (SOAP and WSDL) to inherently support composition.
One of the fundamental characteristics of a Web service is a regular, multi-part
message structure. This structure enables the composition of new
functionality. New message elements supporting new services may be added to
messages in a manner that does not alter the processing of existing
functionality. For example, it is possible to independently add transaction
identifiers and reliable messaging sequence numbers. The two extensions do
not conflict with each other and are compatible with pre-existing message
structures.

Figure 1. Composability allows for using elements on an as-needed
basis.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

3 of 29 11/20/2009 09:00 AM

Figure 1 shows a simple Web services message that contains elements for
WS-Addressing, WS-Security, and WS-ReliableMessaging. Notice that the
WS-Addressing, WS-Security and WS-ReliableMessaging elements are
independent and these elements can be used independently without altering
the processing of other elements.

This characteristic enable security, reliability, and transactions to be defined
in terms of composable message elements.

The notion of composition also allows for the creation of a specific set of
well-defined composable Web services that support security, reliability, etc.
These well-defined services specify the behavior of services necessary to
support higher-level Web service functionality. An example is the Secure
Token Service defined in WS-Trust that issues and validates security elements
in messages.

Moreover, it is important that consumers of a service be able to determine the
supported and required service assurances. The services must document their
requirements and support for transactions, security, reliable messaging, etc.
WS-Policy enables Web services to incrementally augment their WSDL to
document what transaction, security and reliability functions they support or
require. WSDL and WS-Policy enable composition for the description of
services. This in turn enables the other parties to understand what message
elements and higher-level services to employ when interacting with the
service.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

4 of 29 11/20/2009 09:00 AM

An Example of Composition in Practice

Figure 2 provides an overview that shows composition in practice. A customer
and a supplier use Web services to process orders.

Figure 2. Composition in an order processing system

In building these Web services the developers use WSDL and related
documents to describe their business interface. These WSDL documents
describe the set of messages the customer and supplier Web services will
process, e.g. the SubmitPurchaseOrder (SubmitPO) message that flows from
the customer to the supplier. This is shown in the top of Figure 2. Once the
core pieces of the application are in place, the developers can then decide to
support an additional capability, for example, here they decide to make the
order processing transacted. To do this they compose the following elements
into the existing structure:

The services associate WS-Policy documents describing their support for
transactions to their WSDL description of their services. Note that these
policy statements augment but do not fundamentally alter the existing
business functionality.
To support transacted processing, the services add an additional message

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

5 of 29 11/20/2009 09:00 AM

element describing the transactions that composes with, but does not
fundamentally alter, the existing application messages.
When the supplier service receives messages that contain the transaction
element, it uses this information to communicate with a designated Web
service called a coordinator that supports the transaction function. Again,
this additional Web service merely adds to the solution and does not
require modification to the description of the existing business
functionality.
Finally, the services may implement additional operations to support
integration with the transaction coordinator service.

In the preceding figure these additional elements are highlighted.

The model is incremental and composable because:

Adding the new functions can be done independently of adding other
functions.
Adding the function does not disrupt the existing messages, message
processing logic or WSDL.

Composability is an increasingly important design principle, yet the approach
is not always well understood. While the individual WS specifications define
how individual elements and services interoperate, this white paper is
intended to provide an overview of how the collection of specifications can be
composed to provide more sophisticated interoperable Web services.

Web Services: A Service-Oriented Architecture

In recent years we have witnessed a flurry of activity centered on Web services
development. With all of this activity it is important to step back and ask the
question, "Why?" Certainly, Web services don't enable new kinds of
computational capability - after all Web services still run on existing
computers, executing the same set of instructions and accessing the same
data. Moreover, Web service protocols in many cases can actually increase the
protocol overhead for a given task. One of the key reasons we see such interest
in Web services is that Web services are well suited to enable a Service-
Oriented Architecture (SOA). When using Web services to build an SOA, the
solutions consist of collections of autonomous services, identified by URLs, with
interfaces documented using WSDL, and processing well-defined XML
messages. SOA is a natural complement to the object-oriented (OO),
procedural and data centric approaches to solution implementation. Indeed,
when creating an SOA system, the individual services are typically constructed
using one or more of these technologies.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

6 of 29 11/20/2009 09:00 AM

A Service-Oriented Architecture differs from OO and procedural systems in
one key aspect: binding. Services interact based on what functions they
provide and how they deliver them. OO and procedural systems link elements
together based on type or name. The following sections provide more detail.

Services are described by schema and contract not type

Unlike previous systems, the Web service model does not operate on the notion
of shared types that require common implementation. Rather, services interact
based solely on contracts (WSDL/BPEL4WS for message processing behavior)
and schemas (WSDL/XSD for message structure). This enables the service to
describe the structure of messages it can send and/or receive and sequencing
constraints on these messages. The separation between structure and behavior
and the explicit, machine verifiable description of these characteristics
simplifies integration in heterogeneous environments.

Furthermore, this information sufficiently characterizes the service interface so
that application integration does not require a shared execution environment
to create the messages structure or behavior.

The service-oriented model assumes a fully distributed environment where it is
difficult, if not impossible, to propagate changes in schema and/or contract to
all parties that have encountered a service. Service-orientation implies that
contracts and schema should remain backward compatible and may contain
information that is incompletely understood by particular processing systems.

For that reason, the contract and schema technologies designed for use in
service-oriented designs enable more flexibility than traditional object-oriented
interfaces. In particular, services use features such as XML element wildcards
(e.g., xsd:any), schema extensions and optional SOAP header blocks to evolve
services in ways that do not break deployed applications. These characteristics
are the key to the composability of Web services.

Service compatibility is more than type compatibility

Procedural and Object-oriented designs typically equate type compatibility
with semantic compatibility. Service-orientation provides a richer model for
determining compatibility. Structural compatibility is based on contract
(WSDL and optionally BPEL4WS) and schema (XSD) and can be validated.
Moreover, the advent of WS-Policy provides for additional automated analysis
of the service assurance compatibility between services. This is done based on
explicit assertions of capabilities and requirements in the form of WS-Policy
statements.

Using WS-Policy, services describe their service assurance capabilities and

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

7 of 29 11/20/2009 09:00 AM

requirements in the form of a machine-readable policy expression containing
combinations of assertions. This allows service to select each other based on
"how" or "with what quality" they deliver their contracts.

Policy assertions are identified by stable and globally unique names whose
meaning is consistent in time and space no matter which service the assertion
is applied to. Policy assertions may also have parameters that qualify the exact
interpretation of the assertion.

Service-orientation assumes that bad things can and will happen

Some previous approaches to distributed applications explicitly assumed a
common type space, execution model, and procedure/object reference model.
In essence, the "in-memory" programming model defined the distributed
system model.

Service-orientation simply assumes that the services execute autonomously and
there is no notion of local execution or common operating environment. For
this reason, an SOA explicitly assumes that communication, availability, and
type errors are common.

To maintain system integrity, service-oriented designs explicitly rely on a
variety of technologies to deal with asynchrony and partial failure modes.
Techniques such as asynchronous messaging, transactions, reliable messaging,
and redundant deployment are the norm in a service-oriented systems.

Moreover, unlike the in-memory model, service-orientation assumes that not
only that an incoming message may be malformed, but also that it may have
been transmitted for malicious or completely unexpected purposes.
Consequently service-oriented systems protect themselves by placing the
burden of proof on all message senders by requiring applications to prove that
the required rights have been granted to the sender. Consistent with the
notion of service autonomy, service-oriented architectures typically rely on
administratively managed trust relationships to avoid per-service
authentication mechanisms common in classic web applications.

Service-orientation enables flexible binding of services

One of the core concepts of service-oriented architecture (SOA) is flexible
binding of services. More traditional procedural, component and object models
bind components together through references (pointers) or names. An SOA
supports more dynamic discovery of service instances that provides the
interface, semantics and service assurances that the requestor expects.

In procedural or object-oriented systems, a caller typically finds a server based

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

8 of 29 11/20/2009 09:00 AM

on the types it exports or a shared name space. In an SOA system, callers can
search registries such as UDDI for a service.

That is message compatible with the caller's requirements. Compatibility
can occur through WSDL or matching messages from well-known XML
Schemas.

1.

That documents support for service assurances that the caller requires.
For example, the caller may desire certain approaches to security or
transactions.

2.

The loose binding with respect to the implementation of the service that
enables alternative implementations of behavior can be used to address a
range of business requirements. For example, the alternative implementations
might correspond to alternative vendors in a supply chain enabling more rapid
response to changing market conditions. Similarly the alternative
implementation might be geographically distributed data centers enabling
disaster tolerance.

Web Service Specifications and Functions

This section provides an overview of the Web service specifications.

A Composable Approach to Web Services

This section briefly describes the Web service specifications that are available.
We explain their value to solution providers, their role in a broader
architecture and how they compliment each other.

The following figure provides a high-level grouping of the Web service
specifications published by IBM, Microsoft and others. Note that this figure is
not meant to imply a strict layering between the groups; instead it is intended
to provide an intuition about the relationships between functional areas. For
example, message security does not require Description and similarly
Description is a useful development time concept for Messaging.

Figure 3. Web Services - Secure, Reliable, Transacted

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

9 of 29 11/20/2009 09:00 AM

The Basics - Transports and Messaging

If I send you a letter written in French but you were expecting a telephone call
in English, we will not communicate. Interoperability of Web services faces the
same problem; we address this by providing a common set of transports and
messaging technology.

Moreover, to ensure these technologies are effective in practice, IBM,
Microsoft, and others created the Web Services Interoperability Organization
(WS-I). Recently the WS-I released a basic profile that formally documents
interoperable Web service transport and messaging mechanisms.

3.2.1 Transports - HTTP, HTTP/S, SMTP

This set of specifications defines the core communication mechanisms for
moving raw data between Web services.

HTTP, HTTP/S, and Simple Mail Transport Protocol (SMTP) are examples in
this group. Web service implementations may additionally support other
transports, but it is critical to provide support for standard, interoperable
protocols.

3.2.2 Message Formats - XSD

The next group of specifications defines interoperable mechanisms for
encoding Web service messages for transport. The transports move blocks of
"bytes" between services. This is only useful if the participants can convert the
bytes into useful data structures that their application processes.

The messaging specification group defines how to format messages properly.
XML and XML Schema definitions provide the mechanism for abstractly
agreeing on message (data) structures. SOAP defines the standard encoding
for representing XML messages in the byte information that services exchange
over transports.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

10 of 29 11/20/2009 09:00 AM

3.2.3 WS-Addressing

Messages and responses both go somewhere and come from somewhere.
WS-Addressing provides an interoperable, transport independent approach to
identifying message senders and receivers. WS-Addressing also provides a
finer grain approach to identifying specific elements within a service that send
or should receive a message.

Today most systems using Web services encode the destination for a Web
service message with a URL that is placed in the HTTP transport. The
destination for the response is determined by the return transport address.
This approach builds on the basic browser-server model of HTTP.

Using today's approach, the source and destination information are not part of
the message itself. This can cause several problems. The information can be
lost if a transport connection terminates (for example, if the response takes a
long time and the connection times out) or if the message is forwarded by an
intermediary such as a firewall.

WS-Addressing provides a mechanism to place the target, source and other
important address information directly within the Web service message. In
short, WS-Addressing decouples address information from any specific
transport model.

In many scenarios messages are targeted directly to a service and the
addressing information in the message can be described simply using a URL.
But in practice, we often find that messages are targeted to specific elements
or resources within a service. For example, a coordination service might be
coordinating many different tasks. The coordinator needs to associate most
incoming messages with a specific task instance that it manages and not the
coordination service itself.

WS-Addressing provides a simple yet powerful mechanism called an endpoint
reference for addressing entities managed by a service. While such information
could be encoded in an ad-hoc manner within the URL of the service, the
endpoint references provides a standard XML element that enables a
structured approach to encoding this fine-grained addressing.

The combination of fine-grain control over addressing coupled with the
transport-neutral encoding of the message source and destination enables Web
service messages to be sent across a range of transports, through
intermediaries, and it enables both asynchronous and extended duration
communication patterns.

WS-Addressing also enables a sender to indicate where a response should go in

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

11 of 29 11/20/2009 09:00 AM

a transport-independent manner. The response to a message may not
necessarily go to the sender. In HTTP for example, without WS-Addressing it is
impossible to specify that the response should be sent elsewhere.

These enhancements to the messaging model enable Web services to be used
to support many business scenarios. For example, certain banking tasks
require human review for approval at certain steps. There are usually many
active instances of the task at any point in time. WS-Addressing provides a
general mechanism to associate incoming or outgoing messages with specific
tasks. The mechanism that the service uses is transparent to those using the
service through an endpoint reference.

Description

The transport and message specifications allow Web services to communicate
using messages. But how do the participants know what the messages are?
How does a Web service document or describe the messages it sends and
receives? Using a Web service requires an understanding of the messages the
Web service will consume and produce - the interface for the Web service. The
description group of specifications enables a Web service to express its
interface and capabilities.

In addition to message interoperability; these specifications also enable
development tool interoperability. The description specifications provide a
standard model that allows different tools from different vendors to
collaboratively support developers. In the same way that Web services isolate
partners from implementation and infrastructure choices, the description
specifications isolate partners from development tool choices.

3.3.1 WSDL

The Web Services Description Language (WSDL) and the XML Schema (XSD)
are the base specifications in this group. XML Schema allows developers and
service providers to define XML types for data structures, e.g. a purchase
order, and messages, e.g. the CreatePO message. WSDL allows a Web service
to document the messages it receives and sends. In other words, what
"actions" or "functions" the service performs in terms of the messages it
receives and sends.

WSDL provides support for a range of message interaction patterns. It
supports one-way input messages that have no response, request/response, and
one way sends with or without a response. The last two patterns enable a
service to specify other services that it needs.

Proposed WSDL enhancements provide support for documenting protocols and

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

12 of 29 11/20/2009 09:00 AM

message formats a service supports, and the service's address.

3.3.2 WS-Policy

WSDL and XSD definitions often do not provide enough information to call a
Web service. WSDL and XSD define the service's interface syntax but they do
not express information about how the service delivers its interface or what the
service expects of the caller. For example, does the service require security or
implement transactions?

WS-Policy enables a service to specify what it expects of callers and how it
implements its interface. WS-Policy is critical to achieve interoperability at the
higher-level functional operation of the service. Security, transactions, reliable
messaging and other specifications require concrete WS-Policy schema. These
allow services to describe the functional assurance that they expect from and
provide to callers.

The WS-Policy framework provides a base model for defining policy
expressions.

WS-Policy supports a grammar for aggregating policy statements and allows
the construction of more flexible and complete sets of policy.

WS-PolicyAttachment specifies how to associate a policy set with XML
messages and WSDL elements (operations and portTypes).

Together WS-Policy and WS-PolicyAttachment provide the framework.
Individual specifications define their domain specific policy statements and
schema.

Finally, WS-PolicyAssertions provides a foundational set of common policy
statements that can be used to achieve interoperability.

3.3.3 Obtaining Descriptions

XML, XSD, WSDL and WS-Policy support describing the interface and service
assurances for a service. But, how do potential users of the service find this
information?

Currently, the most common approach is through e-mail exchanges or word of
mouth. A more general purpose, scalable model is necessary. There are two
options, the service may go directly to the service to obtain information using
WS-MetadataExchange or it may choose to use a UDDI service that aggregates
this information for multiple target services.

Developers use WS-MetadataExchange when they have a reference to a service

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

13 of 29 11/20/2009 09:00 AM

and need to understand what it does. Developers use UDDI when they want to
find a reference to a service that supports a specific set of functions.

3.3.4 WS-MetadataExchange

As described above, services typically provide information such as WSDL,
WS-Policy, and XSD, that describe the service itself. Collectivity we refer to
information about the service as metadata. The WS-MetadataExchange
specification enables a service to provide metadata to others through a Web
services interface. Given only a reference to a Web service, a potential user
can access a set of WSDL/SOAP operations to retrieve the metadata that
describes the service. Clients can use WS-MetadataExchange at design time,
when building their clients, or at runtime.

3.3.5 UDDI

Often it is useful to collect metadata about a collection of services and to make
the information available in a form that is searchable. Such metadata
aggregation services are a useful repository in which organizations can publish
the services they provide, describe the interfaces to their services, and enable
domain-specific taxonomies of services. The Universal Description and
Discovery Interface (UDDI) specification defines a metadata aggregation
service.

Solutions can query UDDI at design time to find services compatible with their
requirements. The developers may use these services in the definition of their
BPEL4WS workflows, for example. Solutions can also query UDDI at runtime.
In this scenario, the caller "knows" the interface it requires and searches for a
service that meets its functional requirements or is provided by a well-known
partner.

Note that one of the mechanisms that might be used to populate a UDDI
service with metadata is to acquire the metadata from services using
WS-MetadataExchange.

Service Assurances

Web services have generated so much enthusiasm in part because of their
ability to bridge disparate systems. Developers have produced many fully
functional solutions using the base capabilities of transport, messaging and
description. However, to be accepted by developers creating more powerful
integration solutions, Web services must provide functionality to ensure the
same level of service assurances provided by more traditional middleware
solutions. It is not enough to simply exchange messages. Applications and
services reside in middleware and systems that provide valuable higher-level

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

14 of 29 11/20/2009 09:00 AM

functions such as security, reliability, and transacted operations. Web services
must provide a mechanism for interoperability between these functions.

Security

This family of specifications is critical to cross-organization Web services.
These specifications support authentication and message integrity,
confidentiality, trust, and privacy. They also support federation of security
between different organizations.

3.5.1 WS-Security

WS-Security is the basic building block for secure Web services. Today, most
distributed Web services rely on transport level support for security functions.
Examples are HTTP/S and BASIC-Auth authentication. These approaches to
security provide the minimum necessary for secure communication. The level
of function they provide, however, is significantly less than that provided by
existing middleware and distributed environments.

Two examples highlight the deficiencies of BASIC-Auth and HTTP/S.

A sends a message to service B. B partially processes the messages and
forwards it to service C. HTTP/S allow authentication, confidentiality and
integrity between A-B and B-C. However, C and A cannot authenticate
each other, or hide information from B.
For A, B and C to use BASIC-Auth for authentication. They must share the
same replicated user and password information. This is unacceptable in
many scenarios.

WS-Security solves these problems. It supports:

Signed, encrypted security tokens. A can generate a token that C can
verify as having come from A. B cannot forge the token.
A can sign selected elements or the entire message. This allows B and C to
confirm that the message has not changed since A sent it.
A can seal the message or selected elements. This ensures that only the
intended service for those elements can use the information. This prevents
B from seeing information intended for C and vice-versa.

WS-Security uses existing security models (Kerberos, X509, etc). The
specifications concretely define how to use the existing models in an
interoperable way. Multi-hop, multi-party Web service computations cannot be
secure without WS-Security.

3.5.2 WS-Trust

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

15 of 29 11/20/2009 09:00 AM

Security relies on pre-defined trust relationships. Kerberos works because
participants "trust" the Kerberos Key Distribution Center. PKI works because
participants trust the root certificate authorities. WS-Trust defines an
extensible model for setting up and verifying trust relationships.

The key concept in WS-Trust is a Security Token Service (STS). An STS is a
distinguished Web service that issues, exchanges and validates security
tokens. WS-Trust allows Web services to set up and agree on which security
servers they "trust," and to rely on these servers.

The STS has broad applicability in that it can be used to issue security tokens
that make a wide range of assertions. In many cases it will be used to issue the
same assertions but in different formats. For example, an STS might issue a
Kerberos token asserting that the key holder is Susan and it might do this
based on an X.509 certificate issued by a trusted Certificate Authority. This
enables organizations using different security technologies to federate. An STS
might also issue a security token asserting that the key holder is a member of
the group BankTellers based on an incoming security token that asserts an
identity claim.

3.5.3 WS-SecureConversation

Some Web service scenarios only involve the short sporadic exchange of a few
messages. WS-Security readily supports this model. Other scenarios involve
long duration, multi-message conversations between the Web services.
WS-Security also supports this model, but the solution is not optimal.

There are two sub-optimal usages of WS-Security in these scenarios:

Repeated use of computationally expensive cryptographic operations such
as public key validation.
Sending and receiving many messages using the same cryptographic
keys, providing more information that allows brute force attacks to "break
the code."

For these reasons, protocols like HTTP/S use public keys to perform a simple
negotiation that defines conversation specific keys. This key exchange allows
more efficient security implementations and also decreases the amount of
information encrypted with a specific set of keys.

WS-SecureConversation provides similar support for WS-Security. Participants
often use WS-Security with public keys to start a "conversation" or "session,"
and use WS-SecureConversation to agree on session specific keys for signing
and encrypting information.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

16 of 29 11/20/2009 09:00 AM

3.5.4 WS-Federation

WS-Federation allows a set of organizations to establish a single, virtual
security domain. For example, a travel agent, an airline and a hotel chain may
set up such a federation. An end-user that "logs into" any member of the
federation has effectively logged into all of the members. WS-Federation
defines several models for providing federated security through protocols
between WS-Trust and WS-SecureConversation topologies.

Additionally, customers often have "properties" when they deal with an
enterprise. An example is a preference for window or aisle seats, or a midsize
car. WS-Federation allows the members to set up a federated property space.
This allows each participant to have secure controlled access to each member's
property information about the end-users.

Properties and information about individuals may be closely held for privacy
protection or because the information provides a competitive advantage to a
specific member. To support these requirements, WS-Federation supports a
pseudonym model. Users that have authenticated to the travel agency have
agency generated "aliases" in their interactions with the airline or hotel. This
protects the privacy of the end-user and the competitive advantage that the
travel agency may gain by knowing user properties.

Reliable Messaging

In an Internet world, almost all communication channels are unreliable.
Messages disappear. Connections break.

Without a reliable messaging standard, Web service application developers
must build these functions into their applications. The basic approaches and
techniques are well understood, for example many operating and middleware
systems ensure messages have unique identifiers, provide sequence numbers,
and use retransmission when messages are lost. If application Web service
developers implement these models in their applications. They may make
different assumptions or design choices, resulting in little if any reliable
messaging.

3.6.1 WS-ReliableMessaging

WS-ReliableMessaging defines mechanisms that enable Web services to ensure
delivery of messages over unreliable communication networks.

WS-ReliableMessaging ensures services implement interoperable approaches,
and also enables runtime vendors to ease application development by
providing services that implement the protocols. This significantly simplifies

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

17 of 29 11/20/2009 09:00 AM

the task of application development. Business logic then has far fewer error
conditions that it must handle.

Finally, the industry has a rich set of message-oriented middleware for reliably
routing and distributing messages. Each implementation uses proprietary
protocols. WS-Reliable Messaging protocols allow different operating and
middleware systems to reliably exchange message. Thus, it supports bridging
two different infrastructures into a single, logically complete, end-to-end
model.

Transactions

A complex business scenario may require multiple parties to exchange multiple
sets of messages. An example is a set of financial institutions setting up a
financial offering that involves insurance policies, annuities, checking accounts
and brokerage accounts. The multiple messages exchanged between
participants constitute a logical "task" or "objective."

For success, the parties must be able to:

Start new coordinated tasks.1.
Associate operations with their logical task. The parties may be setting up
multiple accounts for different customers at the same time.

2.

Agree on the outcome of the computation. For example, does everyone
agree that the financial packages were set up?

3.

WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity support
these requirements.

3.7.1 WS-Coordination

WS-Coordination is a general mechanism for starting and agreeing on the
outcome of multiparty, multi-message Web service tasks. WS-Coordination has
three key elements:

A message element called a coordination context that flows on all
messages that Web services exchanges during the computation. The
coordination context contains the WS-Addressing endpoint reference to
the coordination service and it in turn contains information to identify the
specific task being coordinated.

1.

The coordinator service. The coordinator service provides a service,
described using WSDL, that provide the ability to start a coordinated
task, terminate a coordinated task, allow a participant to register in a
task, and produce a coordination context that is part of all messages
within a group.

2.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

18 of 29 11/20/2009 09:00 AM

The coordination service also includes an interface, defined in WSDL, that
participating services use in order to be informed of the outcome of the
coordinated task.

3.

A Web service that receives a message with a new coordination context
registers with the coordinator service in the context in order to receive
outcome information. Other specifications may augment this framework for
domain and assurance specific requirements.

WS-Coordination is a general framework and capability. WS-AtomicTransaction
and WS-BusinessActivity extend this framework to allow the participants in the
distributed computation to robustly determine outcomes.

3.7.2 WS-AtomicTransaction

WS-AtomicTransaction defines a specific set of protocols that plug into the
WS-Coordination model to implement traditional two-phase atomic transaction
protocols. It is important to note that the atomic, two-phase model is only with
respect to the services involved. Sites or infrastructure offering services may
advertise two-phase commit, but use some other intra-enterprise model like
compensation or versioning. This freedom makes a simple two-phase commit
model more useful for long-running Internet computations.

3.7.3 WS-BusinessActivity

WS-BusinessActivity defines a specific set of protocols that plug into the
WS-Coordination model to implement long-running, compensation-based
transaction protocols. While BPEL4WS defines a transaction model for business
processes, it is WS-BusinessActivity that specifies the corresponding protocol
rendering. This, again, is an example for the composability of the Web services
specifications.

Service Composition

The uppermost element in the Web service layering is service composition.
Service composition allows developers to "compose" services that exchange
SOAP messages and define their interface in WSDL and WS-Policy into an
aggregate solution. The aggregate is a composed Web service.

3.8.1 BPEL4WS

The Business Process Execution Language for Web Services (BPEL4WS)
specification supports service composition. It enables developers to define the
structure and behavior of a set of Web services that jointly implement a shared
business solution. Each element of the set of services defines its interface using
WSDL and WS-Policy. The composed solution is itself a Web service, which

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

19 of 29 11/20/2009 09:00 AM

supports HTTP/SOAP messages and defines its interface using WSDL and
WS-Policy.

Composition has three aspects: structure, information and behavior. BPEL4WS
introduces three constructs supporting each composition aspect.

A partnerLink defines a named association between the composite service and
a Web service that participates in the overall solution. The composite service
and participating service define their interfaces to each other using WSDL and
WS-Policy. An example might be an association between a manufacturing
company and a supplier.

The partnerLink concept and the WSDL/WS-Policy interfaces between the
composition and partners define the structure of the service composition. They
define the types of services that collaborate to form the composition, and which
messages they exchange with which levels of assurance (security, transactions,
etc.)

BPEL4WS also provides support for defining the information of the service
composition. BPEL4WS defines the concept of a container. The composite
service defines a set of containers, each of which has an XSD definition. The
current state of a specific service is the state of its containers. This defines
what messages it has received or sent.

Finally, BPEL4WS supports defining the behavior of the composite service by
the concept of an activity. A BPEL4WS defined service is a set of activities or
"steps," which define the behavior of the service. The most basic activities are
sending a message to a partner or receiving a message from a partner. Each
message corresponds to a container. BPEL4WS provides support for moving
data between containers.

One key aspect of BPEL4WS activities is that BPEL4WS provides special
support for defining externally visible (public) behavior of services by allowing
controlled use of non-deterministic behavior. For instance the fact that a credit
check is performed in a specific way in the decision process for accepting a PO
may be a private matter for a supplier. BPEL4WS allows the decision process
to be hidden by dropping the credit check behavior from the process
description but showing that the response to the PO may be either acceptance
or rejection. This type of abstract process can be used in conjunction with
WSDL to define interoperable business protocols between business partners
and for vertical industry domains such as supply chain.

BPEL4WS also supports several approaches to controlling the flow of execution
of activities. These include sequencing and graph based flows. BPEL4WS
support predicates on containers to determine which control paths the

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

20 of 29 11/20/2009 09:00 AM

composite service follows.

To summarize, BPEL4WS makes two additions to the previously defined Web
service specifications.

BPEL4WS extends WSDL and WS-Policy support for describing services.
BPEL4WS support combining Web services into aggregate services, and
documenting the associations between services, such as the information
flow and behavior. This provides support for interoperability between
higher layer tools supporting collaborative design of Web services.

1.

BPEL4WS is an execution language. BPEL4WS allows developers to fully
specify the behavior of a composite Web service. IBM, Microsoft, and
other partners will provide environments that execute BPEL4WS
documents and support design and execution time binding to partners.

2.

Web Services in Practice - An Example

The following scenario shows how the WS specifications can be used together
to create Web services that solve real-world needs. The scenario provides an
example of the powerful functionality available to developers because of the
composability of the different WS specifications.

The Web services described in this scenario were created for a joint
IBM-Microsoft demonstration of the technology held on September 17, 2003.
They were used to create an application that is interoperable, secure, reliable,
and transacted; and that spans organizational boundaries.

The demonstration shows a running example of a federated order processing
and Vendor Managed Inventory (VMI) system for a car dealer ordering a part
from an automobile manufacturer; the manufacturer in turn obtains parts from
a supplier operating multiple warehouses. All application to application
communications in the system were built exclusively using the Web service
protocols described previously and running on a collection of computers with
IBM and Microsoft software.

The scenario deals with some of the most common aspects of conducting
business - the interaction between a retail business, its wholesaler, and the
wholesaler's supplier. The scenario shows how different WS specifications can
be composed to automate business process essentials such as:

Authentication to enforce security (WS-Security)1.
Federation of trust between different organizations (WS-Trust and
WS-Federation)

2.

Exchange of data to complete a transaction (WS-AtomicTransaction)3.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

21 of 29 11/20/2009 09:00 AM

Assurance that orders have been submitted through reliable messaging
(WS-ReliableMessaging)

4.

Part 1: The Customer Experience

The example begins with Heather, an employee at a company called Auto
Dealer, logging onto her dealership's secure Intranet web site. This web site is
built using standard, off-the-shelf web technologies. Heather enters the site
using her browser. Access to the site is password protected.

Figure 4. Heather logs onto her company's secure intranet Web site,
and navigates to her customized My Page.

Heather clicks on My Page. In the background the application gathers
information from the Auto Dealer's inventory database. If inventory levels for
an item fall below a defined threshold, a report is generated and listed in the
"Your Alerts" display of Heather's page.

Heather sees that her company has a low inventory on WindshieldPro wiper
blades.

Heather clicks on the link and is seamlessly redirected to a secure Web page
on the Auto Manufacturer extranet, where Heather can place an order. The
experience is seamless because the Auto Dealer software is based on Web
services. The Web service linking the Auto Dealer's intranet with the Auto
Manufacturer extranet was composed using WS-Federation. WS-Federation
ensures that security credentials granted by one site is honored by a second
site.

Here's how this works. The Auto Dealer and Auto Manufacturer have agreed to

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

22 of 29 11/20/2009 09:00 AM

federate their sites. WS-Federation coordinates a series of server-to-server
communications. As soon as Heather clicked on the WindshieldPro link to take
her to the Auto Manufacturer's Web page, The Auto Manufacturer's Web page
server queried its authorization service, which in turn queried Auto Dealer's
authorization service. The Auto Dealer authorization service confirms Heather
is an authorized user, transmitting credentials, along with the name of
Heather's dealership, back to Auto Manufacturer's authorization service, which
grants Heather access. This happens so seamlessly, that all Heather notes is
that she has gone from one Web page to another.

The Web service also queries the Auto Manufacturer customer database for
ordering information linked to Heather's account. The information is presented
in a personalized "My Page" Auto Manufacturer Web page.

Figure 5: Composing a Web service using WS-Federated allows Heather
to seamlessly move from her personalized page at Auto Dealer to her
personalized page at Auto Manufacturer.

Heather's personalized Web page on the Auto Manufacturer extranet allows
her to see that she currently has no outstanding orders; she has one order (for
50 SuperTires) in transit; and that her list of completed orders includes 20
units of CDPlus and 50 units of Leather Cleaner.

Heather clicks on "Create New Order", and a new page opens, prepopulated
with the part she wants - WindshieldPro wiper blades, and the ordering date.
All she needs to enter is the quantity. All other information needed to complete
the order is populated from the Auto Manufacturer database.

Figure 6. An order is easily placed because much of the ordering data

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

23 of 29 11/20/2009 09:00 AM

has already been imported from Heather's file on the Auto
Manufacturer customer database.

Heather submits the order and either searches for additional items to
purchase, or clicks Logout, to end her session and prevent anyone else from
placing an order from her unattended computer.

Note that composing the Web service with WS-Federation provided both Auto
Dealer and Auto Manufacturer with lower administrative costs and end-to-end
security. Without this technology, Auto Manufacturer would have had to
maintain a list of all authorized dealership employees and their passwords. This
would be costly, prone to errors, and reduce the security of the application.

For instance, if Heather quit her job, her user account would be removed at
Auto Dealer. But, if the administrator at the dealership forgot to contact Auto
Manufacturer about her departure, she would continue to have access to the
purchasing site. With WS-Federation, this isn't an issue, because the only
system that has to be changed is the Auto Dealer's Identity Provider service.
The Auto Manufacturer's systems, both the application and the Authorization
Service, have no innate knowledge of Heather, her username, or her password.

Part 2: The Supplier Experience

Although Heather orders WindshieldPro wiper blades from Auto Manufacturer,
it has been half a century since the company actually made its own blades. The
WindshieldPro wiper blades come from a vendor, Supplier.

Tony is the sales representative for Supplier, and he begins his day by logging
onto the Supplier's intranet, just as Heather logged onto the Auto Dealer

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

24 of 29 11/20/2009 09:00 AM

intranet. But instead of using a standard web browser, Tony works with a
Windows application that has built-in support for Web services.

Figure 7. Tony's personal page on the Supplier's intranet reminds him
to check orders and inventory at one of his major clients, Auto
Manufacturer.

When Tony clicks to check orders and inventory, his application uses a Web
service to ask for inventory data that Tony is allowed to access.

One key aspect of this application level Web services request for data is that it
is composed with WS-Federation which authenticates his access to the Auto
Manufacturer's extranet.

The Web service returns the results back to the Supplier's page where it is
displayed by product type and current inventory count.

Figure 8. A Web service populates Tony's Supplier page with inventory
data from Auto Manufacturer's inventory databases. The request was
made secure by composing it with WS-Security and WS-Federation.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

25 of 29 11/20/2009 09:00 AM

Supplier has entered into a just-in-time purchasing agreement with Auto
Manufacturer. Tony is authorized to provide an automatic re-supply order as
part of Vendor Managed Inventory (VMI) on Auto Manufacturer's behalf once
inventory falls below 20. Tony clicks on WindshieldPro to place an order. All
messages between Tony and Auto Manufacturer are protected because the
application is supported by Web services composed with the protections of
WS-Security.

Figure 9. A just-in-time agreement with Auto Manufacturer allows Tony
to enter an order on the company's behalf.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

26 of 29 11/20/2009 09:00 AM

Tony's application provides him with a screen to create requests to Supplier
with a Auto Manufacturer purchase order. Tony orders 50 WindishieldPros
wipers to be shipped directly to the Auto Manufacturer.

When Tony clicks OK, the Warehouse Service, a Web service composed with
WS-AtomicTransactions, WS-Security, and WS-ReliableMessaging, attempts to
place the order with another Web service, the subordinate Warehouse
Services. When a response isn't immediately returned from the Warehouse
Service (because of a temporary network outage) WS-ReliableMessaging
continues to resend the query, until receiving a response.

When the warehouse service receives the order it relays them internally to the
company's two physical warehouses. Since this involves databases between
both warehouses, WS-AtomicTransaction is used to ensure transactional
behavior between the databases.

The Warehouse application divides the orders among the subordinate
Warehouse services to ensure inventory coverage, 70% of order goes to
Warehouse 1 and the remaining 30% goes to Warehouse 2. The Root
Coordinator in the Main Warehouse sends a message to the Root Coordinator of
Warehouse 2 asking for 30% of the order. The Root Coordinator of Warehouse
2 checks it's inventory and sends a message to the Root Coordinator of the
Main Warehouse that there is not enough inventory in stock.

The main Root Coordinator knowing that there is not enough inventory cancels

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

27 of 29 11/20/2009 09:00 AM

the entire transaction and sends a message to Tony's Web service application
indicating the status, inventory levels, and that the transaction was cancelled.
Root coordinator starts to back out transaction and when complete goes back
to the Warehouse to say the transaction has been canceled.

Tony, with the current inventory knowledge, sends another request to the
Warehouse. The Root coordinator coordinates among other transactional
entities (controller of other transactions) and submits this request to the 2
Warehouses going through the same process as before. We are using
WS-Security to sign the entire message body so no matter which domain you
are in you know that you are secure.

Now the Root coordinator commits the transactions, locks resources and
completes the transaction. A message is sent back to Tony indicating that the
transaction has completed successfully.

WS-AtomicTransaction composes with WS-ReliableMessaging and WS-Security
in these messages, to offer a complete enterprise-ready distributed system.

Conclusions

IBM, Microsoft, and our partners are developing Web service specifications
that can be used as the building blocks for a new generation of powerful,
secure, reliable, transacted Web services.

These specifications are designed in a modular and composable fashion such
that developers can utilize just the capabilities they require. This
"component-like" composability will allow developers to create powerful Web
services in a simple and flexible manner, while only introducing just the level
of complexity dictated by the specific application.

These Web service technologies enable organizations to easily create
applications using a Service-Oriented Architecture (SOA). Furthermore, IBM
and Microsoft have demonstrated secure, reliable, transacted SOA applications
that illustrate the richness of the business processes that can be created using
this approach. Moreover, these demonstrations have been operating in a
federated security environment on a heterogeneous collection of systems
running IBM WebSphere and Microsoft .NET software.

We anticipate that these Web Service technologies will be available in
operating systems and middleware, with tools that will make it even easier for
developers to use these technologies. It will be exciting to see the applications
that emerge as developers and organizations use these systems to create the
next generation of Web services-based solutions.

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

28 of 29 11/20/2009 09:00 AM

Acknowledgements

We wish to acknowledge the following individuals that contributed to these
ideas: (alphabetical) Tony Andrews, Bob Atkinson, Keith Ballinger, Don Box,
John Brezak, Allen Brown, Felipe Cabrera, Erik Christensen, George Copeland,
Michael Coulson, Giovanni Della-Libera, Brendan Dixon, Mike Dusche, Colleen
Evans, Max Feingold, Jeff Frey, Henrik Frystyk Nielsen, Praerit Garg, Omri
Gazitt, Scot Gellock, Josh Gray, Martin Gudgin, MaryAnn Hondo, Destry Hood,
Efim Hudis, Tomasz Janczuk, Jim Johnson, Ryan Johnson, Gopal Kakivaya, Chris
Kaler, Johannes Klein, Scott Konersmann, Brian LaMacchia, Dave Langworthy,
Andrew Layman, Paul Leach, Al Lee, Frank Leymann, Rodney Limprecht, Joe
Long, Steve Lucco, John Manferdelli, Ashok Malhotra, Jonathan Marsh, Steve
Millet, Angela Mills, Tony Nadalin, Martin Nally, Karla Norsworthy, Stefan
Pharies, Scott Robinson, Yordan Rouskov, Sujay Sahni, Jeff Schlimmer, Oliver
Sharp, Yasser Shohoud, Dan Simon, Jeff Spelman, Keith Stobie, Satish Thatte,
Robert Wahbe, Elliot Waingold, Richard Ward, Sanjiva Weerawarana, Hervey
Wilson, Eric Zinda.

About the authors

Donald Ferguson co-authored this article.

Tony Storey co-authored this article.

Brad Lovering co-authored this article.

John Shewchuk co-authored this article.

Trademarks | My developerWorks terms and conditions

Secure, Reliable, Transacted Web Services http://www.ibm.com/developerworks/webservices/l...

29 of 29 11/20/2009 09:00 AM

