
http://java.sun.com/developer/technicalArticles/javame/nfc/index.html Nov 19, 2009

Article

An Introduction to Near-Field Communication and the Contactless
Communication API

By C. Enrique Ortiz, June 2008

Near-field Communication (NFC) is characterized as a very short-range radio communication technology with a lot of
potential, especially when applied to mobile handsets. Imagine yourself using your cellphone to interact with posters,
magazines, and even with products while at the store, and with such interaction initiating a request or search for related
information in real-time. Other usages of NFC include the electronic wallet to make payments using your handset, the same
way you do with your credit card. With NFC all this is possible. But NFC is still a young technology. That said,
NFC-enabled handsets are being introduced into the market, and deployments and pilots around the world are occurring.
This article explores NFC and how you can leverage it in your Java application by using the Contactless Communications
API.

Contents

- What is NFC?
- NFC Modes
- The Contactless Communication API
- Anatomy of a Contactless Communication API MIDlet
- Using the Contactless Communication API
- The Contactless Communication and the Generic Connection Framework API

- Discovering and Listening for Supported Targets
- Listening for NDEF-specific Targets
- Processing NDEFMessages
- Using the Card Emulation Activity Notifications
- Registering for and Processing Card Emulation Activity
- Using PushRegistry to Launch NFC Applications

- Security Considerations
- Resources
- About the Author

What Is NFC?

Near-field Communication or NFC is a standard defined by the NFC Forum, a global consortium of hardware,
software/application, credit card companies, banking, network-providers, and others who are interested in the advancement
and standardization of this promising technology.

NFC is a short-range radio technology that operates on the 13.56 MHz frequency, with data transfers of up to 424 kilobits
per second. NFC communication is triggered when two NFC-compatible devices are brought within close proximity, around
four centimeters. Because the transmission range is so short, NFC-based transactions are inherently secure; more on this
shortly.

How do NFC compares to the other short-range communication technologies? The following table provides a quick
comparison:

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

1 of 15 11/20/2009 08:45 AM

Figure 1: Comparing NFC to other close range communication technologies (Source:
NFC Forum)

When compared to the other short-range radio technologies, NFC is extremely short ranged and what I call people-centric.
Some of the other short-range communication technologies have similar characteristics, for example RFID, while others are
completely different yet complimentary to NFC; for example Bluetooth and Infrared. A good scenario of such compliment is
the combination of NFC and Bluetooth, where NFC is used for pairing (authenticating) a Bluetooth session used for the
transfer of data.

NFC Standards
NFC is a standard, and is ISO standards-based. The ISO 14443 Type A and Type B standards + FeliCa is a four-part
international standard for contact-less smart cards operating at 13.56 MHz in close proximity with a reader antenna. The
ISO 18092 standard defines communication modes for NFC Interface and Protocol.

NFC Modes

The NFC forum defines three communication modes, as illustrated next:

Figure 2: NFC Communication Modes (Source: NFC Forum)

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

2 of 15 11/20/2009 08:45 AM

where:

Peer-to-Peer mode is defined for device to device link-level communication. Note that this mode is not supported by
the Contactless Communication API.
Read/Write mode allows applications for the transmission of NFC Forum-defined messages. Note that this mode is
not secure. This mode is supported the Contactless Communication API.
NFC Card Emulation mode allows the NFC-handset behave as a standard Smartcard. This mode is secure. This
mode is supported by the Contactless Communication API.

NFC Terminology

NDEF - NFC Data Exchange Format - standard exchange formats for URI, Smart Posters, other
RTD - Record Type Definition - An NFC-specific record type and type name which may be carried in an NDEF record
NDEF message - Basic message construct defined by this specification. An NDEF message contains one or more
NDEF records
NDEF record - Contains a payload described by a type, a length, and an optional identifier
NDEF payload - The application data carried within an NDEF record

Next let's take a look at the Contactless Communication API, the anatomy of a NFC-based application, and how to use the
API for NFC communication.

The Contactless Communication API

The Contactless Communication API Java specification, led by Nokia and defined under the Java Community Process as
JSR-257, defines a set of APIs for proximity, contactless-based communication. The API consists of five Java packages,
as follows:

Table 1 - JSR 257 Java Packages

Java Package Interfaces Classes Exceptions

javax.microedition.contactless

A mandatory package that contains all the
target discovery and classes common to all
targets

TagConnection
TargetListener
TargetProperties
TransactionListener

DiscoveryManager
TargetType

ContactlessException

javax.microedition.contactless.ndef

An optional package for communicating with
NDEF formatted data tags

NDEFRecordListener
NDEFTagConnection

NDEFMessage
NDEFRecord
NDEFRecordType

javax.microedition.contactless.rf

An optional package for communicating with
RFID (no NDEF formatted data) tags

PlainTagConnection

javax.microedition.contactless.sc

An optional package for communicating with
external smartcards

ISO14443Connection

javax.microedition.contactless.visual

An optional package for reading and
generating visual tags

ImageProperties
VisualTagConnection

SymbologyManager VisualTagCodingException

* Note that the only mandatory package is javax.microedition.contactless

The Contactless Communication API allows you to Discover and Exchange data with contactless targets such as NDEF
tags, RFID tags, and external smartcards. The API also provides support for visual tags. The following diagram illustrates
the relationships between the different API classes and interfaces:

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

3 of 15 11/20/2009 08:45 AM

Figure 3: Contactless Communication API Relationships (Source: JSR-257 Specification)

Next let's cover the anatomy of a typical contactless/NFC-based MIDlet.

Anatomy of a Contactless Communication API MIDlet

Let's now cover the elements of a typical mobile Java application (MIDlet) that uses the Contactless Communication API
looks. This is illustrated next:

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

4 of 15 11/20/2009 08:45 AM

Figure 4: Anatomy of a Contactless Communication API-based Java
MIDlet (Source: CEnriqueOrtiz.com)

where we have the following typical elements:

The Java Runtime with JSR-257 implementation,
the MIDlet application running on a handset,
RFID/NFC transponder, controllers, and baseband,
a SIM card, as well as secure and external elements.

External Readers Secure Elements

External readers include contactless payment readers in
Point of Sale stations, ticketing systems on transportation
systems, external radio, visual tags such as NFC, RFID
and barcodes, or Smartcards

Secure elements (SE) can be internal or external elements;
example of a secure element is a Java Card-based
smartcard. MIDlets can access secure elements by using
the Security and Trust Services API (SATSA), and/or the
Contactless Communication API (JSR 257). External
readers access internal secure elements directly via the
RFID circuitry (using the Card Emulation mode).

Next, let's take a look at how at how to use the Contactless Communication API.

Using the Contactless Communication API

The Contactless Communication API allows you to discover and exchange data with supported contactless radio and visual
targets (tags). Applications using the Contactless Communication API typically follow the flow illustrated next:

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

5 of 15 11/20/2009 08:45 AM

Figure 5: Typical Flow of a Contactless Communication
Application

where:

The first step is for the application to query the implementation to discover the target types that are supported by the
handset,

1.

For each supported target type, the application can register a target listener to receive activity notifications.
Alternatively, the application can register with the PushRegistry for activation due to target activity; supported target
activities are NDEF and secure element in card emulation mode activities,

2.

As targets come into proximity, they are detected (discovered) by the implementation, which in turn notifies the
application(s) by invoking the appropriate activity listeners. Alternatively the PushRegistry activates the MIDlet,

3.

For each discovered target, the application can learn the target's properties,4.
The application can connect to, read, write and exchange data with the discovered target,5.
When done, to release resources, the application closes any opened connections.6.

The following section covers the relationship between the Connectionless Communication API and the Generic Connection
Framework.

The Contactless Communication API and the Generic Connection Framework

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

6 of 15 11/20/2009 08:45 AM

The Contactless Communication API extends the Generic Connection Framework (GCF) as shown next:

Figure 6: The Contactless Communication API and the Generic Connection Framework

The Contactless Communication API defines the following connection-related interfaces:

TagConnection defines the base interface for all RFID, smartcards, and NFC connections:

ISO14443Connection extends TagConnection and is used for contactless connection with ISO 14443-4 compliant
contactless smart card
PlainTagConnection extends TagConnection and is used for contactless connection with RFID (non-NFC) tags
NDEFTagConnection extends TagConnection and used for contactless connection with NFC Forum formatted
RFID tags and contactless smart cards

VisualConnection is used for contactless connection to a visual tag such as a bar code

To learn more about this connection framework see the article The Generic Connection Framework.

Discovering and Listening for Supported Targets
To discover targets that are supported by the platform invoke the method
DiscoveryManager.getSupportedTargetTypes(), which returns an array of TargetTypes. Then for each target type of
interest it registers a target listener. The following code snippet shows the method registerTargetListener() that queries
the platform for the supported targets, then for targets of type ISO 14443-4 (compliant contactless smart card), it registers
a target listener:

Listing 1 - Discovering Targets and Registering Target Listeners

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

7 of 15 11/20/2009 08:45 AM

import javax.microedition.contactless.TargetListener;

:

DiscoveryManager dm = DiscoveryManager.getInstance();

:

/**
 * Discover supported targets, registers listeners
 *
 * @param targetListener the target listener
 */
public void registerTargetListeners(TargetListener targetListener) {
 // Discover supported types
 TargetType[] tp = DiscoveryManager.getSupportedTargetTypes();
 try {
 // Register listener for each of the supported types
 for (int i=0; i<tp.length; i++) {
 if (tp[i].equals((TargetType.ISO14443_CARD))) {
 dm.addTargetListener(
 targetListener, TargetType.ISO14443_CARD);
 } else...
 :
 :
 }
 }
 } catch (Exception e) {
 // ...
 }
}

Note that the Contactless Communication API defines the following target types: ISO14443_CARD, NDEF_TAG, RFID_TAG and
VISUAL_TAG.

Once the targets of interest have been discovered and the appropriate target listeners registered, as illustrated above, the
implementation will invoke the method TargetListener.targetDetected(TargetProperties[]) as new targets are
detected:

Listing 2 - Listening for Registered Target Listeners

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

8 of 15 11/20/2009 08:45 AM

import javax.microedition.contactless.TargetListener;

:

/**
 * A new target has been detected. This method is invoked by
 * the platform.
 *
 * @param prop the properties for the detected target
 */
public void targetDetected(TargetProperties[] prop) {
 for (int i = 0; i < prop.length; i++) {
 // Get UID
 String uid = prop[i].getUid();
 // Get Connection Classes
 Class[] classes = prop[i].getConnectionNames();
 // Get Target Types
 TargetType[] types = prop[i].getTargetTypes();
 // Connect to each Target
 String url = prop[i].getUrl();
 try {
 // Open NDEFTagConnection to the target
 NDEFTagConnection conn =
 (NDEFTagConnection) Connector.open(url);
 :
 :
 } catch (IOException e) {
 // ...
 }
 }
}

The method targetDetected() typically performs the following steps:

Method targetDetected receives the TargetProperties for detected targets,
For each detected target, its URL is retrieved from its properties object,
A connection to the target is made using the GCF,
Data as appropriate is exchanged,
Incoming messages are processed accordingly to its message attributes,
When done, all previously acquired resources are released, and connections are closed.

Please note that reading RFID tags require understanding how ISO14443 I/O and ADPU commands work; this is outside
the scope of this article.

Listening for NDEF-specific Targets

The Contactless Communication API also provides for the discovery of NDEF-specific targets without having to know the
target details; all it needs to know are the record (message) types and how to process them, resulting in a much simpler
communication and data-exchange logic. To listen to NDEF-targets, implement the interface NDEFRecordListener and its
method recordDetected(NDEFMessage ndefMessage). Register an NDEF-record listener by invoking the Discovery
manager method addNDEFRecordListener(listener, recordType). The following code snippet illustrates this:

Listing 3 - Listening for NDEF Targets

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

9 of 15 11/20/2009 08:45 AM

import javax.microedition.contactless.ndef.NDEFRecordListener;
:

DiscoveryManager dm = DiscoveryManager.getInstance();

:

// Register NDEF_TAG target (smart poster) to discover
try {
 NDEFRecordType rt = new NDEFRecordType(
 NDEFRecordType.NFC_FORUM_RTD, "urn:nfc:wkt:Sp");
 dm.addNDEFRecordListener(this, rt);
} catch (IllegalStateException e) {
 :
} catch (Exception e) {
 :
}

The following are the defined NDEF record types:

EMPTY- Record type name format identifier for the empty record.
EXTERNAL_RTD - Record type name format identifier for application specific record type names that follow the NFC
Forum naming conventions.
MIME - Record type name format identifier for the MIME type defined in the RFC 2046.
NFC_FORUM_RTD - Record type name format identifier for the NFC Forum Record Type Description.
UNKNOWN - Record type name format identifier for the unknown record type.
URI - Record type name format identifier for the URI type defined in the RFC 3986.

From the JSR 257 Specification: If the format is EMPTY or UNKNOWN the name must be null. The record type names of
NFC_FORUM_RTD and EXTERNAL_RTD record types must follow the naming rules defined in the NFC Forum RTD
specification. The record type name must only contain characters in the US_ASCII character set.

Processing NDEFMessages

Once the NDEF listener has been registered, the platform will invoke the method recordDetected(NDEFMessage
ndefMessage) for the requested NDEF, passing as argument an NDEF message for the NDEF target that became active
and visible. The method recordDetected() then gets record and record type, and other information from the NDEF
message, and processes the message according to message attributes.

Listing 4 - Processing NDEF Target Messages

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

10 of 15 11/20/2009 08:45 AM

/**
 * Called by the platform, when the requested NDEF record type is
 * discovered by the device from the contactless target.
 *
 * @param ndefMessage the NDEF message to process
 */
public void recordDetected(NDEFMessage ndefMessage) {
 // Get records and record types from NDEF Message
 NDEFRecordType[] rTypes = ndefMessage.getRecordTypes();
 NDEFRecord[] records = ndefMessage.getRecords();
 for (int i=0; i<records.length; i++) {
 // Handle data, based on type of NDEFMessage
 NDEFRecordType t = recordTypes[i];
 NDEFRecord r = records[i];
 byte[] id = r.getId();
 long len = r.getPayloadLength();
 byte[] p = r.getPayload();
 // Process the record
 // ...
 }
}

The processing of the message payload will depend on your application; for example, after reading a URL, the application
may post some information to that URL, or perhaps will open such URL in the web browser.

Using the Card Emulation Activity Notifications

In card emulation mode, a secure element on the device communicates and transacts with an external reader over RFID
hardware. Applications are notified of such transactions, but don't participate on them. This is illustrated next:

Figure 7: Card Emulation Activity Notifications

where:

The internal security element interacts with an external reader,1.
The application (MIDlet) is notified when the external reader has been detected,2.

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

11 of 15 11/20/2009 08:45 AM

If needed, the application communicates with the secure element, using the Contactless Communication API ISO14443
connection interface, or SATSA if available.

3.

The communication between secure element and the external readers is transparent to the application itself, and occurs
using APDU commands similarly to how Java Cards communicate with external readers; for more information see An
Introduction to Java Card Technology - Part 1. Note that the communication between the application and the secure
element requires internal knowledge of the secure applet within the secure element.

The APDU commands are defined in ISO7816-4 specification.

The next diagram, taken from the article An Introduction to Java Card Technology - Part 1, illustrates the typical
relationships of a Java Card application (in this case from the perspective of MIDlet playing the role of the "reader"), and the
Secure Elements (playing the role of the "card-side"):

Figure 8: Typical Elements of a Java Card Application; Contactless Communication Application
Scenario (Source: CEnriqueOrtiz.com)

where:

On a Contactless (NFC) handset, the left-side could be an internal reader, the MIDlet itself, or and external reader (via
NFC Card Emulation Mode),
The right-side, the "card", could be an internal or an external secure element, that is accessible via SATSA or JSR-257,
or over RFID hardware,
All communication occur using APDU commands.

Registering for and Processing Card Emulation Activity

As previously mentioned, when in Card Emulation mode, applications can get notified when an external reader is detected,
but the application itself doesn't participate in the transaction itself. Also, if needed, the application is responsible for
communicating with the secure element using APDU commands, and for this the application must have internal knowledge

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

12 of 15 11/20/2009 08:45 AM

of the applet running on the secure element. To register for card emulation activity notifications implement the interface
javax.microedition.contactless.TransactionListener and its method externalReaderDetected(byte slot).
Register a transaction listener by calling the Discovery manager method dm.addTransactionListener(...). The following
code snippet illustrates this:

Listing 5 - Registering and Processing Card Emulation Activity

import javax.microedition.contactless.TransactionListener;

:
:

// Register Transaction Listener
try {
 dm.addTransactionListener(this);
} catch (IllegalStateException e) {
 ...
} catch (Exception e) {
 ...
}

:
:

/**
 * Called by the platform, when a card emulation event
 * has happened on the RFID hardware.
 *
 * @param slot is the slot needed to open the APDUConnection defined
 * in JSR 177 to the external secure element, may be
 * UNKNOWN_SLOT constant defined in this interface, if the
 * slot can not be identified.
 */
public void externalReaderDetected(byte slot) {

 // Based on slot number above, using ISO14443Connection or SATSA
 // connect to applet, query applet, update screen, etc.
 ...
}

For more information about Java Card and SATSA, see Resources section and the end of this article.

Using PushRegistry to Launch NFC Applications

Automatic application activation or startup is a very important aspect for the success and acceptance of NFC-based
applications, as it allows for a better user experience; by just coming into proximity of (or touching) a reader or another NFC
device, the application is automatically started. The PushRegistry facility that is part of the Mobile Information Device
Profile (MIDP) provides for the automatic application-launch based on timers and connection activity. Note that the
Contactless Communication API extends the PushRegistry for application startup only for 1) NDEF record types and 2) for
secure element (activity) card emulation mode communication.

The connection URLs used for the registration must follow proper naming convention, as specified by specification:

URL format for NDEF push connections: "ndef:"<record_type_format>?name=<record_type_string>

Where:
<record_type_format> is "rtd", "external_rtd", "mime", or "uri",
<record_type_string> is a UTF-8 String is the fully qualified name of the record type, as specified by the
implementation, for example, urn:nfc:wkt:Sp (Nokia Smart-posters)

URL format for card emulation activity: "secure-element:"?aid=<aid_string>

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

13 of 15 11/20/2009 08:45 AM

Where:
<aid_string> is a String containing the applet identifier (numerical characters) for the applet of interest, per
ISO7816-5 specification

To ensure that the application when launched receives notifications related to discovered NDEF records or card emulation
activity, it must register its NDEFRecordListener and TransactionListener as soon as it is started. To learn more about
the PushRegistry see The MIDP 2.0 Push Registry.

Security Considerations

The Contactless Communication API is subject to the security policies of the underlying mobile platform. For MIDP, the
following methods or operations require permissions:

Table 2 - Contactless Communication API MIDP Security Permissions

Method or Operation Permission

DiscoveryManager.getInstance() javax.microedition.contactless.DiscoveryManager

Write NDEFMessage message javax.microedition.contactless.ndef.NDEFTagConnection.write

Opening NDEFTagConnection javax.microedition.io.Connector.ndef

Opening PlainTagConnection javax.microedition.io.Connector.rf

Opening ISO14443Connection javax.microedition.io.Connector.sc

Opening VisualTagConnection javax.microedition.io.Connector.vtag

In this model, you request permissions via the JAD file or the JAR manifest, by creating MIDlet-Permissions property
entries, using the permission names in the table above. Attempting to use a restricted operation without proper permission
causes the system to throw a SecurityException.

For implementations of the Contactless Communication API on CDC profiles, the application must use
java.security.Permission-based security checks. The following methods require permissions:

DiscoveryManager.getInstance()

NDEFTagConnection.write(NDEFMessage message)

Resources

JSR 257: Contactless Communication API
JSR 177: Security and Trust Services API for J2ME
The NFC Forum
An Introduction to Java Card Technology - Part 1
An Introduction to Java Card Technology - Part 2, The Java Card Applet
An Introduction to Java Card Technology - Part 3, The Smart Card Host Application
The Security and Trust Services API for J2ME, Part 1
The MIDP 2.0 Push Registry
Near Field Communication (Wikipedia)
Forum Nokia - Near Field Communication

About the Author

C. Enrique Ortiz is a long time mobile technologist, developer, and writer. He maintains the About Mobility Weblog. He has
been author or co-author of many publications, and has been an active participant in the Java mobility community. Enrique
holds a B.S. in Computer Science from the University of Puerto Rico and has more than 18 years of software engineering,
product development, and management experience.

Rate and Review

Tell us what you think of the content of this page.

An Introduction to Near-Field Communication and ... http://java.sun.com/jsp_utils/PrintPage.jsp?url=htt...

14 of 15 11/20/2009 08:45 AM

